Power Utilities Energy Automation

Paulo Pereira, IoT Consulting Systems Engineer
Cisco Spark

Questions?
Use Cisco Spark to communicate with the speaker after the session

How
1. Find this session in the Cisco Live Mobile App
2. Click “Join the Discussion”
3. Install Spark or go directly to the space
4. Enter messages/questions in the space

cs.co/ciscolivebot#BRKIOT-2111
Thank You!

Maik Seewald
Patrick Grossetete
Ruben Lobo
Rik Irons-Mclean

Sean Song Jiang
Motaz Elshafi
Robert Barton
Dave Schmitt
Agenda

- Utilities Digital Transformation
- Utility MPLS WAN
- Digital Substation
- New Distribution Grid
- Big Data and Analytics
- Conclusion
Utilities Digital Transformation
Utilities digital business imperatives
where utilities industry is focusing today

- Retain & acquire customers & employees
- Improve safety, security and regulatory compliance
- Develop new energy sources and consumption models
- Modernize the utility grid
Utilities capabilities delivered by Cisco solutions

- Substation automation
- Utility telecoms
- Distribution automation
- Smart metering

- Cyber & physical security
- Secure ops for automated systems
- Digitalized emergency response system

- Intelligent contact center
- Customer interaction enrichment
- Smart metering
Industry Business Imperative: Utility Grid Modernization

Business Capabilities

- Increase service reliability
- Optimize grid operations
- Reduce risk
- IT/OT convergence
- Interoperability & Flexibility

Cisco OT Solutions

- Utility WAN
 - TDM to IP/MPLS migration
- Digital Substation
 - IEC 61850 SA + Security
Business and IT must work together
to Respond to Digital Disruption
Utility MPLS WAN
MPLS vs. TDM On The Power Grid

• Strengths of TDM are *Reliability*, *Predictable Delay* and *Bandwidth*

• Strength of packet networks is *flexibility* and *scalability*

• **MPLS** is a solution which is all of the above

• **OPEX** promotes Infrastructure convergence for better utilization of network assets
 • MPLS enables this with advanced L2 and L3 **VPN** technologies
 • Legacy TDM, archaic interfaces (Serial RS-232, E&M), and specific interfaces used in energy (C37.94) will persist for many years

• **MPLS** is the only technology that can unify transport systems and still support all current and future Power Grid services in a secure way
Power Utilities HV Example Use Cases

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor, Measure, Control, Automation, & Protection</td>
<td>SCADA (DNP3, Modbus, T101) serial tunneling with Raw Sockets</td>
</tr>
<tr>
<td></td>
<td>SCADA (DNP3-IP, Modbus-TCP & T104) IP transport</td>
</tr>
<tr>
<td></td>
<td>Wide Area Measurement Systems (WAMS) with IEC 61850-90-5</td>
</tr>
<tr>
<td></td>
<td>Workforce Enablement. Mobile Workforce. Personal Protective Equipment (PPE)</td>
</tr>
<tr>
<td></td>
<td>Video Surveillance and Analytics. Access Control</td>
</tr>
<tr>
<td></td>
<td>Voice and Video for Remote Expert and Collaboration, Wearables</td>
</tr>
<tr>
<td></td>
<td>Cyber Security. Safety. Regulation</td>
</tr>
<tr>
<td></td>
<td>Teleprotection and Current Differential Protection with legacy interfaces</td>
</tr>
<tr>
<td></td>
<td>IEC 61850 Teleprotection with Ethernet interfaces</td>
</tr>
<tr>
<td></td>
<td>IEC 61850 GOOSE messaging for Feeder Protection over Station Bus</td>
</tr>
<tr>
<td></td>
<td>IEC 61850 SV messaging with Merging Units over Process Bus</td>
</tr>
</tbody>
</table>
A Standard-based WAN Architecture

- **Cisco’s WAN architecture** for tele-protection and other power automation use cases is **based on international standards**, guidelines, and recommendations.

- Architectural recommendations and functional requirements, such as latency, latency symmetry and jitter, are derived from:
 - IEC 61850-90-12: Wide Area Network Engineering Guidelines
 - IEC 61850-90-1: Use of IEC 61850 for the communication between substations
 - IEC 61850-5: Communication requirements for functions and device models
 - IEC 61850-90-5: Use of IEC 61850 to transmit synchro phasor information according to IEEE C37.118
 - IEEE 1588: Precision Time Protocol
 - CIGRE D2.35: SCALABLE COMMUNICATION TRANSPORT SOLUTIONS OVER OPTICAL NETWORKS
Cisco Solution Validated Design and Lab

- **Dedicated solution validation** lab for substation automation
- Designed to support current and future **real-world Power Utilities use cases**
- Lab consists of complete **E2E utility network**: NOC, substations, DMZ, WAN
- **End-to-end validation** with RTU, Relays, IED, PMU etc
- Test validation **results documented** in Design and Implementation Guides
Cisco Utility WAN Solution Overview

Business Needs
- Reliability and Efficiency
- Cost Reduction

Business Outcomes
- Greater Visibility and Control over Grid Operations
- Reduced OPEX

Capabilities
- High performance and resilience for Teleprotection
- SCADA Scalability
- Utility compliant
- Easy provisioning, monitoring, and trouble shooting

Solution Components

Legend
- HV = High Voltage
- LV = Low Voltage
- Sub = Substation
- Ctrl = Control

Hardware
- ASR 920U/902U/903U

Software
- EPN-M

Services
- Advanced Services
- Solution Support
Teleprotection Migration to IP

G.703 Co-Dir
TPR Relay
E1/T1, Serial, E&M, C37.94
Migrate from existing Channel-Bank to ASR-900

E1/T1
Line Timing
Preserving channel-bank
CESoPSN or SAToP Pseudowire
Freq. Sync using SyncE
Future support for E&M, C37.94 etc.

Direct Attachment from legacy relays

E1/T1, Serial, E&M, C37.94
Migrate from existing Channel-Bank to ASR-900

E&M, G.703 Co-Dir, C37.94
TPR Relay
E1/T1
Line Timing

Direct Attachment from IEC 61850 relays

Ethernet
TPR Relay

MPLS/IP Transport
Substation Edge Network
Core Network
Substation Edge Network
Substation
Interface Support for Relay Communications

<table>
<thead>
<tr>
<th>Interface</th>
<th>Line Protection Scheme</th>
<th>Supported Cisco Platforms Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1/E1</td>
<td>Line Current Differential (87L) Distance Schemes</td>
<td>ASR903/902 (RSP2), ASR920</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Line Current Differential (87L) Distance Schemes</td>
<td>ASR903/902 (RSP2), ASR920</td>
</tr>
<tr>
<td>C37.94*</td>
<td>Line Current Differential (87L) Distance Schemes</td>
<td>ASR903/902 (RSP2)</td>
</tr>
<tr>
<td>Async RS-232 / V.24*</td>
<td>Distance Schemes</td>
<td>ASR903/902 (RSP2)</td>
</tr>
<tr>
<td>X.21*</td>
<td>Line Current Differential (87L)</td>
<td>ASR903/902 (RSP2)</td>
</tr>
<tr>
<td>E&M*</td>
<td>Distance Schemes</td>
<td>ASR903/902 (RSP2)</td>
</tr>
<tr>
<td>G.703 Co-Directional</td>
<td>Distance Schemes</td>
<td>Roadmap for Nov 2018</td>
</tr>
<tr>
<td></td>
<td>Line Current Differential (87L)</td>
<td></td>
</tr>
<tr>
<td>110 VDC Dry Contact</td>
<td>Distance Schemes</td>
<td>3rd party box required</td>
</tr>
</tbody>
</table>

Support for ASR920-12SZ-IM platform in roadmap
Benefits of Ethernet based Teleprotection
IEC 61850

• Lower latency, from few ms to dozens of us (20x improvement!)
• Lower cost (less interface modules in relays and in routers)
• Less complexity (no need for TDM over MPLS technologies)
• Increased HA, up to 0ms failover, with standards like PRP*
• More resilient solution with multiple distinct precision clock sources

*technology concept to be validated
ASR 903/902/920 Utility Features

<table>
<thead>
<tr>
<th>HW / SW</th>
<th>Feature</th>
<th>SW Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>RS232 TCP Raw Socket for RSP2 (Serial IM)</td>
<td>Aug 2015</td>
</tr>
<tr>
<td>SW</td>
<td>RS232 Mirrored bits - Teleprotection</td>
<td>Aug 2015</td>
</tr>
<tr>
<td>HW</td>
<td>ASR 903 / 902 Utility Env. Certification: IEEE 1613 and IEC 61850-3</td>
<td>Nov 2015</td>
</tr>
<tr>
<td>HW/SW</td>
<td>4w E&M IM - CESoPSN Pseudowire</td>
<td>Nov 2015</td>
</tr>
<tr>
<td>SW</td>
<td>X.21 CESoPSN Pseudowire for RSP2 (Serial IM)</td>
<td>Apr 2016</td>
</tr>
<tr>
<td>SW</td>
<td>RS485 TCP Raw Socket for RSP2 (Serial IM)</td>
<td>Nov 2016</td>
</tr>
<tr>
<td>HW/SW</td>
<td>C37.94 IM - CESoPSN Pseudowire</td>
<td>Nov 2016</td>
</tr>
</tbody>
</table>
ASR 903/902/920

Latest Utility Features (2017)

<table>
<thead>
<tr>
<th>HW / SW</th>
<th>Feature</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>E&M to T1/E1 CESoPSN interworking</td>
<td>Aug 2017</td>
</tr>
<tr>
<td>SW</td>
<td>ASR 920: Raw Socket & IoT IM’s support</td>
<td>Aug 2017</td>
</tr>
<tr>
<td>SW</td>
<td>EPN-M: ASR 902 and ASR 920-12SZ-IM support</td>
<td>Aug 2017</td>
</tr>
<tr>
<td>SW</td>
<td>EPN-M: support for ASR 900 IOT IM’s and features (ex. Raw Socket)</td>
<td>Aug 2017</td>
</tr>
<tr>
<td>HW</td>
<td>ASR 920 Utility Env. Certification: IEEE 1613 and IEC 61850-3</td>
<td>Oct 2017</td>
</tr>
<tr>
<td>HW</td>
<td>G.703+FXS/FXO (G.703 Co-dir4 + FXS3 + FXO*2)</td>
<td>Nov 2018</td>
</tr>
</tbody>
</table>
Evolved Programmable Network Manager

- Life Cycle Device and Service Management
- Evolved Programmable Network (EPN) Manager
- Automated Model Based Point- and - Click Multidomain Provisioning
- 3D Multilayer Packet Flow Visualization
- Model Based Service & Device Views
- Multi Layer End to End Management (Physical & Virtual)

Device IP	Maximum Utilization	Current Utilization
172.23.218.03 | 80% | 72% | 5% | 4% | 3% | 2% | 1% | 0%
10.89.205.140 | 77% | 72% | 5% | 4% | 3% | 2% | 1% | 0%
172.23.218.69 | 61% | 52% | 4% | 3% | 2% | 1% | 0%
10.89.205.33 | 51% | 42% | 3% | 2% | 1% | 0%
10.89.205.45 | 41% | 32% | 2% | 1% | 0% | 0% | 0% | 0%
Digital Substation
IEC 61850 - Communication networks and systems for power utility automation

Scope and Objectives

- **Interoperability** (between devices and systems)
- **Free configuration** (free allocation of functions to devices)
- **Long term stability** (layered, object-model based design)
- **Extensibility** (into new domains or even other IoT verticals)

- Btw, IEC 61850 has left the substation!
IEC 61850: The Protocol Stack

- Network Architecture for the Substation LAN is defined in IEC TR 61850-90-4 (VLANs, RSTP, PTP)
- It contains also PRP/HSR references to IEC 62439-3:2012 for seamless redundancy and recovery including Red Boxes
- Specifies Reference Topologies based on PRP/HSR

Note: Protocol Stack extended by XMPP profile
IEC 61850: Within the Substation
Station and Process Bus

- **The Station Bus** connects entire substation; provides connectivity between central management and individual bays
 - Connects IEDs within a bay, connects bays, bays with the gateway/gateway router
 - Provides only soft real-time quality of service (except for bus bar protection)

- **The Process Bus** connects the primary measurement and control equipment to the IEDs
 - May be limited to a bay
 - Expected to provide hard real-time quality of service

Source: IEC TC57
Substation Automation
Main Design Topics

- High Availability
- Topology
- Timing
- Network Segmentation
- QoS
- Security
- Management

Core Connectivity Design Topics
Substation Automation HA

Recovery time examples in IEC 61850-5 (Communication Requirements)

=> HA Protocol to be used

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>Locale</th>
<th>Network Recovery Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCADA to IED, client-server</td>
<td>Station bus</td>
<td>400 ms</td>
</tr>
<tr>
<td>IED to IED interlocking</td>
<td>Station bus</td>
<td>4 ms</td>
</tr>
<tr>
<td>IED to IED reverse blocking</td>
<td>Station bus</td>
<td>4 ms</td>
</tr>
<tr>
<td>Bus bar protection</td>
<td>Station bus</td>
<td>0 ms</td>
</tr>
<tr>
<td>Sampled values</td>
<td>Process Bus</td>
<td>0 ms</td>
</tr>
</tbody>
</table>

- REP or RSTP can not meet HA requirements for Station and Process Bus
- HSR is now partially supported by Cisco but…
- PRP is currently the best technical option in most cases!
PRP Overview

- Parallel Redundancy Protocol: IEC 62439-3 Clause 4
- Two versions so far: PRP-0 (2010) and PRP-1 (2012) and they are not compatible
- Two independent LANs must exist (any topology)
- Two copies of each packet are delivered over these LANs

- Main PRP benefits: Zero packet loss when single LAN fail with support for any network topology
- Main PRP limitation: Double of network components and cost
IEC 61850 Station Bus and PRP
Platform Requirements

Forward Jumbo (PRP) Frames
- Cisco Catalyst, IE, CGS, etc

Environment: IEC 61850-3
- CGS 2520 and all IE switches

PTP: 1588v2 Power Profile (and more…)
- IE5k, IE4k, IE 2kU, CGS 2520

PRP RedBox Support (Station Level):
- IE5k, IE4k, or …IE2kU
Power Utilities Timing Requirements

…and typical deployment models

- **General Applications (<1msec)**
 - Sequence of Events
 - Digital Fault Recorder (DFR)

- **High Precision Timing (<10usec)**
 - Synchrophasors (C37.118)
 - Sample Values (IEC 61850-9-2)
 - Distributed DFR Events

- **IEC 61850-5-2003 (1usec to 1msec)**
 - Class T1: Events = ±1msec
 - Class T5: Samples Values ±1usec

- **Dedicated IRIG-B Cables:**
 - Distance Limitations,
 - Cost, Flexibility, etc

Distributed Controller

RTU

DFR

IED

PMU

GPS Antenna

Station Bus

Process Bus

IRIG-B Source

Dedicated IRIG-B Cables:

- Distance Limitations,
- Cost, Flexibility, etc
Why IEEE 1588?

- IEC 61850 Edition 2 makes reference to IEEE 1588v2 Power Profile
- Precision Time Protocol (PTP) IEEE 1588v2 was developed with the following aims:
 - Synchronization accuracy in the sub-microsecond range
 - Minimum requirements of the processor performance and network bandwidth
 - Low administration effort
 - Use via Ethernet networks
 - Specification as an international standard

Power Profile, as defined in IEEE C37.238:
- Layer 2 (Ethernet) Multicast
- 1usec over 16 hops
- Peer-To-Peer Delay Measurements
Utility IEEE 1588 PTP Requirements
…and new deployment model

- IEC 61850-90-4
 (Substation Engineering Guidelines)
- IEEE C37.238
 (IEEE 1588 PTP in Power System Applications)
New HA and Timing Features
IE 5000 and/or IE 4000

New Features Shipping:
• NTP (WAN or local server) to 1588v2 PTP GMC (IE 5000 and IE 4000)
• IRIG-B Interface support (IE 5000)
• Horizontal Stacking (10G IE 5000)
• GNSS support (GPS, GLONASS) with PTP GMC (IE 5000)
• 1588 PTP redundancy over PRP - IEC 62439-3, Annex A (IE 5000 and IE 4000)
• HSR basic Redbox - currently no PTP or PRP support (IE 4000 only)

Committed Roadmap Features (early Spring):
• Coupling box between HSR and PRP (IE 4000 only)
• Support for CDP/LLDP on HSR (IE 4000 only)
IoT Industrial Network Director

Industrial operations focused network management
Gain asset visibility and reduce unplanned downtime
Zero Touch Commissioning and Replacement

- Pre-provision configuration and software for automated network commissioning
- Ensure consistent Network design and Security policies
- Swap hardware when switch fails and recover with automated configuration and software image replacement
- Supported on all managed IE switches

1-year term license at no cost with every new IE switch
Security in Energy Automation

Regulations and Standards in the Energy World

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Guidelines</th>
<th>Requirements</th>
<th>Implementation & Technical Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIST 7628</td>
<td>IEC 62443-3-3: System requirements for IACS solution suppliers</td>
<td>IEC 62056-5-3: DLMS/COSEM Security</td>
</tr>
<tr>
<td></td>
<td>EU Mandate M/490 SGIS</td>
<td>DIN SPEC 27009</td>
<td>IEC 62443-4-1: Product development requirements</td>
</tr>
<tr>
<td></td>
<td>Report: Smart Grid Information Security</td>
<td>BDEW Whitepaper (D,A)</td>
<td>IEC 62443-4-2: Technical security requirements IACS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrator</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST 7628</td>
<td></td>
<td></td>
<td>IEC 15118-2: Vehicle-to-Grid Communication/VF</td>
</tr>
</tbody>
</table>

NERC CIP v5 (US, CAN)
IEC 62351: Undertake the development of standards for security of the communication protocols defined by the IEC TC 57 and on end-to-end security issues.
Part 3, 4, 5, 6 contain cryptographic definitions to protect protocols end-to-end.

Part 8 defines Role Based Access Control.

Part 9 specifies key and credential management.

Part 11 defines security for XML files (typically CIM data).
IEC 62443 – Security for IAC

Industrial Automation and Control Systems

• **Title: Industrial Automation and Control Systems Security**

• Industrial automation and control (Initially developed in the scope of ISA99) → CENELEC EN 62443 in future

• Includes the SCADA components typically found in process industries

• Especially used by organizations that operate in critical infrastructure industries:
 • Electricity transmission and distribution
 • Gas and water distribution networks
 • Oil and gas production operations
 • Gas and liquid transmission pipelines
IEC 62443 – Security for IAC
Overview

<table>
<thead>
<tr>
<th>General</th>
<th>Policies & Procedures</th>
<th>System</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Terminology, concepts and models</td>
<td>2-1 Requirements for an IACS security management system Ed.2.0 Profile of ISO 27001/02</td>
<td>3-1 Security technologies for IACS</td>
<td>4-1 Product development requirements</td>
</tr>
<tr>
<td>IS 2009</td>
<td>CDV 2Q/15</td>
<td>TR 2009</td>
<td>CDV</td>
</tr>
<tr>
<td>1-2 Master glossary of terms and abbreviations</td>
<td>2-2 Implementation Guidance for an IACS Security Management System</td>
<td>3-2 Security risk assessment and system design</td>
<td>C</td>
</tr>
<tr>
<td>In Developm.</td>
<td>Planned</td>
<td>Procedural</td>
<td>Procedural</td>
</tr>
<tr>
<td>1-3 System security compliance metrics</td>
<td>2-3 Patch management in the IACS environment</td>
<td>3-3 System security requirements & security levels</td>
<td>C</td>
</tr>
<tr>
<td>In Developm.</td>
<td>TR</td>
<td>Procedural</td>
<td>Functional</td>
</tr>
<tr>
<td>1-4 IACS Security Life Cycle and Use Cases</td>
<td>2-4 Requirements for IACS solution suppliers</td>
<td>Requirements for Systems</td>
<td>Requirements for Systems</td>
</tr>
<tr>
<td>Planned</td>
<td>IS 2015</td>
<td>Requirements for Components</td>
<td>Requirements for Components</td>
</tr>
<tr>
<td>Definitions and Metrics</td>
<td>Procedural</td>
<td>Procedural</td>
<td>Procedural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements for Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions and Metrics</td>
</tr>
<tr>
<td>Requirements for Organizations</td>
</tr>
</tbody>
</table>
Applied Security for IAC
IEC 62443-3-3: System security requirements

“It’s more than just a bunch of boxes, it’s solutions that work together”
Segmentation by use case (ZONE)
Deep Packet inspection with IoT Signatures
New Distribution Grid
New Distribution Grid Model

<table>
<thead>
<tr>
<th>Top Use Cases</th>
<th>Use Case Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distribution Automation (DA) – Grid Reliability / Quality of Service:</td>
</tr>
<tr>
<td></td>
<td>- Supervisory Control and Data Acquisition (SCADA), Grid visibility and control</td>
</tr>
<tr>
<td></td>
<td>- Fault Location, Isolation and Service Restoration (FLISR)</td>
</tr>
<tr>
<td></td>
<td>- Remote Asset Monitoring.</td>
</tr>
<tr>
<td></td>
<td>- Improve SAIFI / SAIDI</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Metering Infrastructure (AMI) – Energy Efficiency:</td>
</tr>
<tr>
<td></td>
<td>- OPEX Reduction: Remote meter reading, Connect/Disconnect - Pre-payment, Demand Response</td>
</tr>
<tr>
<td></td>
<td>- Customer Service: Power Outage / Restoration reporting, customer portals for usage data</td>
</tr>
<tr>
<td>3</td>
<td>Distributed Energy Resources – Grid Efficiency and Stability:</td>
</tr>
<tr>
<td></td>
<td>- Renewable resources integration</td>
</tr>
<tr>
<td></td>
<td>- Anti-islanding; Peak shaving; Inject energy surplus; Energy storage</td>
</tr>
<tr>
<td></td>
<td>- Integrated Volt / Var Control (IVVC)</td>
</tr>
</tbody>
</table>

Key Use Cases Driving Communication Deployments in the MV/LV Distribution Grid

Advanced European Secondary Substation

IP WAN Backhaul:
1. 3G / 4G
2. Fiber; xDSL

DER: Solar and Wind
IEC 61850 (MMS & Goose)
SCADA (IEC 104)

DA - Grid Visibility and Control
SCADA: IEC 104/101; DNP3; Modbus
Other: NTP; HTTP; SNMP
Ethernet or Fiber

AMI – Reduce OPEX; Improve Customer Service
Metering: Web Services/ HTTP
Other: FTP; SSH; SNMP; NTP; LDAP
Ethernet

DER IED; Self Healing
IEC 61850 (MMS & Goose); SCADA (IEC 104)
Other: NTP; HTTP; SNMP, SSH
Ethernet
Mature European Trend: Renewable Energy

Key Opportunities created:
- Power Generation (wind farms, solar farms, etc)
- Machine vendors (wind turbines; etc)
- Distribution System Operators

Why investing in Renewables:
- Reduce energy dependency from other countries
- Create a profitable and growing industry in the country
- Regulation following Japan nuclear incident
- Diversify business, reduce risk
Cisco Multiservice (Secure) Field Area Network

AMI Operations
- Meter Data Collection & Management
- AMI / HAN
- Transformer Monitoring
- Distribution Automation
- EV Charging

FAN Operations
- Public or Private WAN Backhaul (3G, WiMax, Fiber)
- Substation
- CGR 1000
- Ethernet Networks
- Street Lighting
- Gas / Water Meters

DA Operations
- ASR 1000
- IR 800
- IR 809
- Distributed Resources
- SCADA, Protection & Control
- Direct Cellular Connected Assets

NAN Tier
- RF Mesh, PLC or LoRa

FAN Operations
- Work Force Enablement
- NAN

DA Operations
- AMI Operations
- Substation
- Ethernet Networks

CISCO Multiservice (Secure) Field Area Network
Flexible, Enabling Multiple Applications and Devices

Proprietary protocols over Serial

Vendor’s dependent

Standard protocols over Serial

IEC 101, DNP3, Modbus, DLMS/COSEM, etc

IEC 104, DLMS/COSEM, Modbus/TCP, Web Svc, etc

IEC 101, DNP3, Modbus, DLMS/COSEM, etc

IEC 104, DLMS/COSEM, Modbus/TCP, Web Svc, etc

Standards protocols over TCP/IP

Secure & Reliable IP infrastructure

VLAN; 802.1X; VRF; QoS; FlexVPN & DMVPN; FW; IPv4 & IPv6 dual stack; Multicast; EEM; IOX

IP Interfaces

GOOSE/SV

Industrial Ethernet, Fiber and Copper

Traffic tunneled over IP Raw Socket (TCP & UDP)

Protocol Translation GW:
• IEC 101 to IEC 104
• DNP3 to DNP3/IP

Serial PPP/CHAP

L2 over IP WAN (L2TPv3 or EoMPLS)

Ethernet L2 switching

MMS

GOOSE/SV over IP/UDP future IEC 8-1 and 9-2 profiles

Flexible, Enabling Multiple Applications and Devices
Secure and Scalable FAN Solution

Metering & Data

- Meter Data Management
- SIEM

NTP Appliance: acts as precision timing source

Active Directory (AD) & Certificate Authority (CA): for user & device identity management along with CA for certificate management. Supports Cryptography: ECC keys for certificate-based authentication

Firewall + IPS Appliance: primary firewall for securing the head-end infrastructure; optional use of IPS module

Public or Private IP WAN

SCADA

- OMS
- DMS
- GIS

AAA Server: scalable, high-performance policy system for authentication, user access, and administrator access; ECC for meters

IPAM, DHCPv6 and DNS: IPv4/IPv6 address allocation and naming: scale up to +10M endpoints

IPv4 / IPv6
- Adv. Scalable Routing
- FlexVPN, IKEv2
- Application Visibility

CIDR (RF Mesh & PLC)

CG-NMS: Network & Security Management: supports browser based clients, interface with ASR 1K, CGR 1K and End Points

CG-NMS DB (Oracle): Stores all operational state, device configuration, network event alarm, performance metric, etc

Cisco FND

Directory Services
Certificate Authority

AAA Server

IPAM DHCP

ASR 1K

DA devices (Ethernet / Serial)

IPv4 / IPv6
- Adv. Scalable Routing
- FlexVPN, IKEv2
- Application Visibility

CG-CG-NMS DB (Oracle): Stores all operational state, device configuration, network event alarm, performance metric, etc

IPAM, DHCPv6 and DNS: IPv4/IPv6 address allocation and naming: scale up to +10M endpoints

Firewall + IPS Appliance: primary firewall for securing the head-end infrastructure; optional use of IPS module

Active Directory (AD) & Certificate Authority (CA): for user & device identity management along with CA for certificate management. Supports Cryptography: ECC keys for certificate-based authentication

NTP Appliance: acts as precision timing source

Metering & Data

- Meter Data Management
- SIEM

Public or Private IP WAN

Secret and Scalable FAN Solution

Secure and Scalable FAN Solution

Metering & Data

- Meter Data Management
- SIEM

NTP Appliance: acts as precision timing source

Active Directory (AD) & Certificate Authority (CA): for user & device identity management along with CA for certificate management. Supports Cryptography: ECC keys for certificate-based authentication

Firewall + IPS Appliance: primary firewall for securing the head-end infrastructure; optional use of IPS module

Public or Private IP WAN

SCADA

- OMS
- DMS
- GIS

AAA Server: scalable, high-performance policy system for authentication, user access, and administrator access; ECC for meters

IPAM, DHCPv6 and DNS: IPv4/IPv6 address allocation and naming: scale up to +10M endpoints

IPv4 / IPv6
- Adv. Scalable Routing
- FlexVPN, IKEv2
- Application Visibility

CG-NMS: Network & Security Management: supports browser based clients, interface with ASR 1K, CGR 1K and End Points

CG-NMS DB (Oracle): Stores all operational state, device configuration, network event alarm, performance metric, etc

Cisco FND

Directory Services
Certificate Authority

AAA Server

IPAM DHCP

ASR 1K

DA devices (Ethernet / Serial)
IoT Access Technologies Landscape

Long Range
- 2G
- 3G
- 4G
- 5G

Medium Range
- Wi-Fi .b, .g, .n
- Wi-Fi .p
- Wi-Fi .a
- Wi-Fi .ac
- Wi-Fi .ah
- 802.15.4 g/e
- 802.15.4
- W-HART
- 1901.2 PLC
- 6Tisch
- ZigBee
- ISA 100.11a

Short Range
- B-LE

Cost
- Licensed vs. unlicensed
- Private vs. public
- Frequency bands
- Power requirements
- Provisioning

TX Current
- Standby Current
- Module Cost

Power requirements
- Signal penetration
- GHz vs. sub-GHz

Device eco-system
- Bandwidth capacity

Use cases applicability
- Indoor vs. Outdoor
- Mobile vs. Fixed

Broad Use Cases support
- Utilities, Industrial (process and discrete manufacturing), Smart Cities (parking, environment,…), Agriculture and rural, Transportations, horizontal/consumers, Assets management

- Power consumption very sensitive to endpoint
- Massively scattered deployment in geo
- Low data rate applications
- Open technology – Ecosystem for solution
Cisco Solution for LoRaWAN™
New Business and Operational Models with IoT Connectivity

Cisco IoT Back End – LoRaWAN™ Solution

IoT Infrastructures

Cisco Field Network Director - LoRaWAN™ Gateway MGMT
- Field Network Director
- AAA/CA
- VPN Connectivity

LoRaWAN™ Mgmt. Subsystem
- App Connector
- App Connector
- LoRaWAN™ App Router
- LoRaWAN™ Network Server

IoT Applications

VPN Connectivity

GW ZTD and LRR Initial Provisioning

LoRaWAN™ Network Mgmt. and Application Enablement

IP WAN

Public Network

Private Network

IR8x9 LoRaWAN™

Unlicensed ISM Radio

LoRa Endpoints

IR8x9 LoRaWAN™

Unlicensed ISM Radio

LoRa Endpoints

Cisco live!
New Business and Operational Models
Cisco IoT systems enables Applications to run closer to edge

VERTICAL SOLUTIONS
- Transportation
- Oil and Gas
- Manufacturing
- Service Provider
- City
- Defense
- Utility
- Public Safety

APPLICATIONS
- Application Enablement
- Fog Services
- Management and Automation

ECOSYSTEM
- Emerson
- Rockwell Automation
- BOMBARDIER
- SK
- Honeywell
- SAP
- Itron
- Huawei
- Dell
- Jabe

IoT Connectivity

Security

New Business and Operational Models
Cisco IoT systems enables Applications to run closer to edge
Combine SCADA and ICT

Eximprod ES 200 Virtual RTU

- Standard Communication protocols (Modbus, DNP3, IEC 61850, IEC 60870-5-104) allow interoperability with any new or existing third-party equipment (protection relays, power quality devices, IEDs) and SCADA DMS dispatch;

- Master/Client communication protocols are available on both Ethernet (TCP/IP) and serial (RS232/485).
Fog Application Management
Cisco Fog Director

Fog Application Management

Provisioning
Change management

Scalable Control

Management up to 5000 Devices
Application monitoring

Easily Adopted and Integrated

Rest APIs
Realizing the full value of IoT data
…with Cisco IoT

Data Sources
- Transport agnostic
- Data Flexible

Cisco IoT
- Extract Data
- Compute Data
- Move Data

Apps on public clouds, private clouds, data centers, and networks

Business Outcomes
- $59

Data brokering
Pre-integrated
Big Data and Analytics Use Cases in Utilities

- Large Scale LV Outage Management
- Cyber Security
- Energy forecast
- Grid and Social Data Correlation
- Dynamic Line Rating
- Load and Generation Disaggregated Forecast
- Environment monitoring
- EV impact on LV
- Modeling Geographical Information
- Asset Monitoring
- Predictive Maintenance
- Smart Metering Analytics
- LV and MV Outage Management
- Data Integration and Interoperability
- Grid and Social Data Correlation
- Proactively Manage Power Quality
- Analytics for Settlement Process

Cisco Live!
Predictive Maintenance Example Use Cases

…according to some European DSO

- Vegetation Analysis and Route Cost
- Weather Effects on overhead lines
- Historical Id of problematic Assets
- Oil Quality and Transformer Usage
- Turbine Monitoring and Anomaly Detection
- Environment Monitoring and Reporting
Data science at high level:

1. Define Business Problem

2. Acquire, Process and Move Data

3. Develop and Deploy Model

4. Monitor Model Performance

- Start with the Business Case!
- Understand your use case requirements and the data and analytics solutions in the market
- Build the complete team:
 - Sensor, Network, Security
 - Advanced Analytics, Data Scientist
 - Industry Subject Matter Experts
 - etc
- Start small, learn and grow fast to design a system architecture
Conclusion
Key Takeaways

• Cisco has mature IP solutions, validated with other Industry leaders, that answer to Power Utilities’ most demanding applications:
 • Current Differential Protection
 • IEC 61850 Substation Automation
 • Distributed Energy Resources at scale

• Cisco continues to innovate with new products and solutions (ex. IOx, Kinetics) in order to increase Cisco value proposition to Power Utilities
Questions?
Use Cisco Spark to communicate with the speaker after the session

How
1. Find this session in the Cisco Live Mobile App
2. Click “Join the Discussion”
3. Install Spark or go directly to the space
4. Enter messages/questions in the space

cs.co/ciscolivebot#BRKIOT-2111
• Please complete your Online Session Evaluations after each session

• Complete 4 Session Evaluations & the Overall Conference Evaluation (available from Thursday) to receive your Cisco Live T-shirt

• All surveys can be completed via the Cisco Live Mobile App or the Communication Stations

Don’t forget: Cisco Live sessions will be available for viewing on-demand after the event at www.ciscodive.com/global/on-demand-library/.
Continue Your Education

• Demos in the Cisco campus
• Walk-in Self-Paced Labs
• Tech Circle
• Meet the Engineer 1:1 meetings
• Related sessions
Thank you